
Scaffolding CT via Point-And-Click and P5.js

Andrea Valente

Department for Media, Design, Learning and

Cognition,

University of Southern Denmark,

Kolding, Denmark

aval@sdu.dk

Emanuela Marchetti

Department for Media, Design, Learning and

Cognition,

University of Southern Denmark,

Kolding, Denmark

emanuela@sdu.dk

Edward Abel

Department for Media, Design, Learning and

Cognition,

University of Southern Denmark,

Kolding, Denmark

abel@sdu.dk

Abstract— This paper investigates how to provide meaningful

scaffolding to bachelor humanities students, to enabled them to

acquire Computational Thinking (CT) technical skills, and in

particular basic programming competences. Two of the authors have

been involved in the re-design, implementation and execution of a

basic programming and CT course, offered to first-semester students

as part of the Information science, IT and interaction design bachelor

program, at the University of Southern Denmark (SDU). The central

problem we faced in restructuring our introductory course, was

finding a game genre that could support creative coding for beginners,

be motivational and recognizable by the students, and would work with

our use-modify-create learning approach. Our findings suggest that

point-and-click games are an effective way to provide scaffolding and

ease non-technical students into P5 programming. The genre has good

expressive power, and the students were motivated because they

recognized and could relate to the games they worked on. Future work

will address students’ problems with scaling up the point-and-click

games.

Keywords—Computational Thinking, Scaffolding, Humanities,

Introduction to Programming, P5.

I. INTRODUCTION

In recent years, introductory computer programming courses
at universities are increasingly becoming part of programs
outside of engineering facility, such as within the humanities
and social science faculty, and are being refashioned to include
explicit consideration of Computational Thinking (CT). Two of
the authors has been involved in the implementation and
execution of such a course, entitled Basic programming and
CT1, offered to a dozen first-semester students in the fall of
2022, as part of the Information science, IT and interaction
design bachelor program by the University of Southern
Denmark (SDU). The goal of the course, recently extended in
size by 33% to 13 3-hour lectures, is to introduce the first
semester bachelor students to programming. The first half of the
course uses MIT’s Scratch (https://scratch.mit.edu/) to explore
basic CT concepts like problem decomposition, and algorithms
designs, and their programming counterparts in Scratch:
sequence, choice, iteration, and function declaration and calling,
as well as Scratch-specific animation commands, controls, and
the online IDE. Software development practices are also
introduced, like testing and debugging, and principles related to
iterative software development. These concepts and practices
are in line with [1] and [2]’s definition of the central aspects of
CT. Scratch was chosen to support learners, helping them start

1 Translated from Danish “Grundlæggende programmering og

Computational Thinking”.

coding; as stated in [3]: “[…] blocks to text progression has
been shown to be beneficial to just jumping straight into text
based programming”. The second half of the course introduces
JavaScript via the P5.js library [4]. P5 was chosen to leverage
on creative coding, and allow students to create graphic and
interactive programs from the very beginning, with little code,
easing them into textual programming. Because of the structure
of the first year of the education line, discussions about data
types, scoping, and functions should be kept to a minimum.
Consequently, we should not introduce JavaScript arrays, and
focus instead on primitive types.

The aim of our study is to reflect on how to provide
meaningful scaffolding, or support, to beginner programmers
from non-technical curricula. A central problem we faced in
restructuring the course, was finding a good problem domain
that could support creative coding for beginners, be motivational
and recognizable by the students, and would work with our use-
modify-create learning approach. And since we want our
students to practice creative coding, which involves interaction
and graphics, the problem became: finding a game genre to
scaffold CT. The next section presents related work and ideas on
the possible strategies teachers can adopt to organize their
materials. Section III introduces the point-and-click game genre,
shows how it can be used to support beginners, and discusses
our approach to present and implement this genre of games in
P5. Section IV discussed our findings and reflections, based on
the reaction of the class during the semester and the code the
students delivered for their final exam. Conclusion and future
work close the paper.

II. RELATED WORK

Our study is grounded within the area of CT, intended as

the “thinking” behind the computational problem solving

performed with a computer through the creation of algorithms

[5], using existing programming languages and tools. More in

details, the skills targeted in the course refers mainly to

algorithmic thinking and programming and could be grouped

within the umbrella categories of abstraction, generalization,

decomposition, algorithms (sequencing and control flow) and

debugging (as in [5], [6] and [7]). Introducing basic

programming skills outside of technical curricula has become a

popular research topic as well an internationally spread practice

([5] and [7]). A main challenge for this practice is to introduce

mailto:aval@sdu.dk
mailto:emanuela@sdu.dk
mailto:abel@sdu.dk

programming as a required skill within an education that has

other target subjects: programming is not the main goal for the

learners. Hence, their commitment to learning programming

might be on the average weaker than technical students. This

aspect is investigated by [6], which looked at the challenges of

student teachers in acquiring CT skills. Interestingly, student

teachers see themselves as medium to high proficient in their

CT skills. Broader interdisciplinary definitions of CT have

been proposed, starting from Wing [1] and [8], including

designing systems and understanding human behavior.

However, these definitions are often shallow and not especially

helpful in educational contexts [7], where the goal is to enable

learners to acquire technical knowledge in understanding

algorithms and coding, with the societal goal of democratizing

the making and use of digital technologies [9]. Therefore, an

emerging question regarding learning and teaching CT is how

to achieve forms of meaningful scaffolding for technical CT

skills for non-technical students. By scaffolding we mean any

kind of pedagogical approach, activities, tools, and guidance

that teachers can provide to enable learners to acquire new

knowledge [10]. The concept of scaffolding has become

popular in various educational studies, and it is grounded on a

construction metaphor, indicating the use of “a temporary

structure to support and protect the construction of a building”

[10] which will be dismantled at its completion. In this sense,

scaffolding in teaching and learning is intended as a system of

“temporary guidance” provided by the teachers and negotiated

with the learners, changing over time and to be removed once

the learning goals are met [10].

The study of supporting learning of CT for non-technical

students deal with different forms of scaffolding, for instance

[11] investigates a series of seven strategies: load reducing,

schema activation, structured based, generative, guided

discovery, modeling, and teaching thinking. The first, Load-

reducing, is aimed at preventing cognitive overload to facilitate

the learners to focus on specific topics or procedures while

acquiring new knowledge. A typical example is the use of

block-coding and remixing code provided by the teachers, to

enable beginner programmers to familiarize with coding and to

focus on problem-solving, avoiding the challenges of dealing

with the syntax of specific programming languages, both

strategies were adopted in our studies. This first strategy is in

line with the use-modify-create approach to scaffolding, which

is typical of the Danish education system. The second

scaffolding strategy is called Schema-activation and it requires

to contextualize new knowledge within the learners’ existing

understanding. This is in line with Schön [12] and his notion

that learning involves the creation of a system of cases, which

can be recalled when dealing with new knowledge and new

situation to be solved. The third strategy is called Structured-

based and focuses on enabling learners to “manipulate concrete

objects” for better understanding of more abstract concepts or

rules. This strategy matches the constructionist playful

approach proposed by Papert [13], aimed at facilitating learning

through hands-on playful experiences, through sociomaterial

engagement and trial-and-error experiments. The fourth

strategy is called Generative and it requires learners to generate

connections between what they know and what they learned.

According to Schön [12] this happens through forms of

reflection in action, while learners are asked to solve specific

problems applying what they know and practicing the new

knowledge that they are supposed to learn. The fifth one is

called Guided-discovery and it deals specifically with strategic

scaffolding from the teachers’ perspective, so to enable the

learners to acquire increasing level of freedom in exploring

given problems, and identify relations, patterns and underlying

rules and principles. The sixth strategy is called Modeling and

it emphasize demonstrating or explaining the steps involved in

solving a given problems. This can include the creation of

worked-out examples to be presented to the learners.

Understanding the steps involved in algorithmic problem

solving is a key competence in CT and learners are required to

be reflective about their process [2], this was also a goal for the

course discussed in our paper. The seventh and last strategy

identified by [11] is called Teaching Thinking and deals with

explicitly teaching specific metacognition to students, asking

them to describe their coding to others and eventually convince

another learner of the correctness of their solution through

activities of peer learning.

III. FROM STICK&CLICK TO P5

The need to introduce programming practices and concepts
to students outside the technical subjects is spawning new
programming environments, languages and libraries that ease
beginners into programming, or at least coding ([9] and [11]). In
recent years the authors have worked on tools to provide creative
scaffolding to for beginners (e.g. in Python [14]) but also in tools
that reduce coding to a minimum, while still enabling learners
to create interactive digital contents (as in [6]). StickAndClick
([15] and [16]) is one of these tools, and it combines problem-
solving with the creation of digital content, in order to foster
critical thinking and creativity. Implemented as a special kind of
online visual editor, this digital tool is meant to support teachers
and pupils by proposing a minimalistic, asset-based redefinition
of coding, focusing on the creative and design-like aspects of
CT. In StickAndClick learners can design, implement and run
simple games, starting from their visual assets, i.e. images. The
central mechanic of the games is clicking on an image to change
it to another; after the assets are loaded into a new project, visual
rules can be defined, expressing before-after semantics by
examples. A rule can specify that when clicking on a certain
image (e.g. a cat asleep), that image will change into another (a
cat awake), but there can also be a condition on other images on
the screen. The paper [16] explores the range of games that can
be implemented with a tool like StickAndClick, and concludes
that even without being Turing complete, StickAndClick’s
visual rule-based language can describe quite complex games,
including point-and-click, turn-based and platform games.

However, even if StickAndClick was not aimed at teaching
programming, it already suggested that a simple mechanics like
clicking on an image, in conjunction with simple context-aware
before-after rules, could result in complex games, possibly
restricted to the point-and-click genre. Interestingly, the
StickAndClick prototype was implemented using P5, so that it
could be easily tested online. It was therefore decided to re-
analyze the basic ideas behind StickAndClick as a scaffolding

tool, simplify them even further, and create a skeleton code in
P5 that could: allow our bachelor students to create simple
games with little coding (1 or 2 pages of P5), work without
requiring arrays or other kind of advanced data-types, and keep
the central ideas from StickAndClick, which are clicking as the
main game mechanics and rules based on the images currently
on the screen. However, given that our code examples cannot
use arrays or iterate over collections of any kind, we could not
give the learners a single code skeleton to be used as a game
engine, and that would work simply by changing the list of
images to load, or redefining some data-structure to express
different rules for a particular game. Instead we defined a recipe,
a meta-level algorithm to generate any StickAndClick-style
game in P5. We still presented the students with a few examples
of point-and-click games implemented in P5 following the
recipe, and following the use-modify-create approach, after we
played with the games and looked at the code, we gave them
time to make sense of what they would change to customize
these exemplar games (see Schön’s exemplars in [12]). Only
later they were asked to create their own games, using the
exemplars, the recipe, and providing their own images. In this
sense, this game recipe acts as a scaffolding resource [10],
enabling learners to start coding; the recipe itself will then be
used as a simple reference as they progress, making their own
games.

Fig. 1. The recipe to code any simple point-and-click game.

The recipe is depicted in Fig. 1, and to make sense of the 3
portions of the code that it describes, we presented the students
with the diagram in Fig. 2. Note that since we cannot use
collections, the students have to analyze their game and decide
how many variables to create, with the suggestion that each
image is connected logically to 2 variables: one to contain the
actual image, loaded by P5 in the preload() method, and a
variable named after the image, that remembers the state of that
image. In the first exemplar of such games that we introduced to
the class, the canvas shows a single image of a smiling face;
when the user clicks on the face it changes into a sad face. A
variable represents the state of the game, it is initialized in the
setup() method, and it can only be changed by the
mouseClicked() P5 method. The draw() method simply looks at
the value of the variable and decides which of the 2 images to
draw on the canvas. As shown in Fig. 2, this is an instance of the
model-view-controller design pattern and allows the 3 functions
to work independently, allowing learners to smoothly approach

game design and implementation and leverage on pen and paper
design of the gameplay.

Fig. 2. The game has three parts, reminiscent of the MVC design pattern.

This first exemplar was introduced in lecture 10 of 13, so
after the students had worked with Scratch for the first 6 lectures,
and after a few lectures about P5, events, graphics and
animation. In that lecture, they were also presented with the
recipe to create a generic point-and-click game. The goal of the
lecture was to organize the students in groups of 2 to 3,
customize and modify the games exemplars. After the class
practiced with the idea of point-and-click games, we had a
lecture structured as a 1-day game jam. The students were again
divided in groups, and this time they were encouraged to
brainstorm, design and implement a point-and-click game. A
moodboard was suggested as a way to quickly collect game-
related images, to draw inspiration for the theme of the game,
and eventually to use in the game implementation. The games
created in this 1-day game jam were also the basis for the
individual games that the students would deliver for their exam,
together with a report. This short game jam was created to
support the generative and guided-discovery scaffolding
strategies from [11].

IV. FINDINGS AND REFLECTIONS

In order to evaluate our scaffolding approach to CT, we

conducted a qualitative analysis and created an affinity diagram

[17] on the assignments that the students have delivered for the

1-day game jam. Our analysis focused on how the students

related to the provided recipe to create point-and-click games.

For the exam of the course, the students have to deliver a report

with a discussion of two programs: one written in Scratch and

the other in P5. They had the option to expand the games they

created during the 1-day game jam and use them as the basis for

the P5 part of the exam: 6 out of 10 took this option. The

remaining 4 students implemented their own games or

interactive animations, they showed confidence with

JavaScript, previous knowledge of programming, and all got

very high or top grades. The students who worked on the point-

and-click games can be categorized as follows: those who

followed our recipe customizing the images and rules, those

who expanded the games by adding complex rules, many

assets, and even multiple levels; and two students, who

explored the hidden object genre, working with a large

background image, drawing circles around the found items, and

writing order-independent rules. Finally, many of the P5

programs delivered for the exam were well commented and

showed a good use of functions as a mean to reduce code

duplication and improve readability.
The main recurring problem in the point-and-click games

was managing the complexity of having multiple levels. One
student succeeded, and the resulting game was quite long to
play, challenging and bug-free. Other attempts failed to resolve
conflicts among the rules and the states of the images on screen.
Some problems related to rules interfering with each other and
the growing complexity of long point-and-click games, already
manifested themselves during the lectures, allowing for deeper
reflections during tasks supervision, and especially after the
game jam. We also performed a simple analysis of the code
submissions using JSHint, as visible in Table I; the first 6 rows
are from students who worked with the point-and-click code.

TABLE I: ANALYSIS OF P5 CODE SUBMISSIONS (JSHINT).

The average “largest cyclomatic complexity” (next-to-last

column in the table) of the point-and-click deliveries was 39.5,
while the other games had 9.5. A higher cyclomatic complexity
of the point-and-click games indicates that the students have
implemented the logic of their games using many conditional
statements, as suggested by our recipe, and that their games
became much more complex than the examples we originally
provided. In general, the students who worked with point-and-
click code created more complex code, which is a positive
outcome from a pedagogical point of view (also according to
[10] and [6]). Interestingly, as the students appropriated the
recipe and game examplars, they gained more opportunities for
personal exploration of the game designs and coding, a very
desirable development when supporting beginners (also
according to [9]), as a resource for fostering further exploration
of creative coding.

V. CONCLUSION

Our findings suggest that point-and-click games are an
effective way to provide scaffolding and ease non-technical
students into P5 programming, even in the face of severe
limitation on the coding concepts that can be introduced. The
game genre motivated our students by providing a recognizable
spectrum of games; it also has enough expressive power and
even allowed students to expand into similar domains, such as
hidden object games. Adopting P5.js instead of plain JavaScript

offered a smooth transition from Scratch to text-based
programming, and the stability of P5’s online IDE solved many
of the typical problems related to beginner programmers
working on different machines and systems. Our approach
would also fit introductory programming courses in secondary
education and for non-technical bachelor in other educational
lines; for that, we are currently investigating porting our recipe
to other coding environments adopted in Danish education.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Communications of the
ACM, vol. 49(3), 2006, pp. 33-35.

[2] R. Chongtay, ”Computational Thinking som redskab til problemløsning
på tværs af fagområder,” Computational Thinking. Teoretiske, empiriske
og didaktiske perspektiver. N. Bonderup Dohn, R. Mitchell, and R.
Chongtay (Eds.), Forfatterne og Samfundslitteratur, 2021, pp.123-146.

[3] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
programming: blocks and beyond,” Communications of the ACM, vol. 60
(6), June 2017, pp. 72–80. https://doi.org/10.1145/3015455

[4] A. Engin. Learn JavaScript with p5. js. Coding for visual learners.
Springer, 2018.

[5] M. Tedre, and P. J. Denning, ”The long quest for computational thinking,”
Proceedings of the 16th Koli Calling international conference on
computing education research, 2016, pp. 120-129.

[6] F. Esteve-Mon, M., Llopis, and J. Adell-Segura, “Digital competence and
computational thinking of student teachers,” International Journal of
Emerging Technologies in Learning (iJET), vol. 15 (2), 2020, pp. 29-41.

[7] P. J. Denning, and M. Tedre, “Computational thinking: A disciplinary
perspective,” Informatics in Education, vol 20 (1), 2021, pp. 361-390.

[8] Y. Li, A. H. Schoenfeld, A. A. diSessa et al. ”Computational Thinking Is
More about Thinking than Computing,” Journal for STEM Education
Research 3, 2020, pp. 1–18.

[9] C. Angeli, and M. Giannakos, “Computational thinking education: Issues
and challenges,” Computers in Human Behavior, vol. 105, 2020.

[10] N. Boblett, “Scaffolding: Defining the metaphor,” Studies in Applied
Linguistics and TESOL, 2012 vol. 12 (2).

[11] U. Kale, M. Akcaoglu, T. Cullen et al., ”Computational What? Relating
Computational Thinking to Teaching,” TechTrends, vol. 62, 2018, pp.
574–584.

[12] D. A. Schön, Educating the reflective practitioner: Toward a new design
for teaching and learning in the professions. Jossey-Bass, 2002.

[13] S. Papert, and I. Harel, “Situating constructionism,” Constructionist
Learning. I. Harel (Eds.), MIT Media Laboratory, vol. 36 (2), 1991, pp.
1-11.

[14] A. Valente, E. Marchetti and J. Wang, "Design of an educational
multimedia library to teach Python to non-technical university students,"
2020 9th International Congress on Advanced Applied Informatics (IIAI-
AAI), Kitakyushu, Japan, 2020, pp. 169-175, doi: 10.1109/IIAI-
AAI50415.2020.00041.

[15] A. Valente and E. Marchetti, “The road towards friendly, classroom-
centered interactive digital contents authoring,” 27th International
Conference on Computers in Education´. Asia-Pacific Society for
Computers in Education, 2019, pp. 38-46.

[16] A. Valente and E. Marchetti, “StickAndClick: sticking and composing
simple games as a learning activity,” Learning and Collaboration
Technologies. Human and Technology Ecosystems, P. Zaphiris, & A.
Ioannou (Eds.), the 22nd HCI International Conference, HCII 2020,
Proceedings, 2020, vol. 2, pp. 333-352. Springer. Lecture Notes in
Computer Science Vol. 12206. https://doi.org/10.1007/978-3-030-50506-
6_24

[17] J. Preece, Y. Rogers, and H. Sharp, Interaction design: beyond human-
computer interaction, John Wiley & Sons, 2023

https://doi.org/10.1145/3015455

